# This file is **symlinked** across the APIs to ensure they are exactly the same.
from ... import _cy
from ..._h3shape import (
ContainmentMode,
H3Shape,
LatLngPoly,
LatLngMultiPoly,
geo_to_h3shape,
h3shape_to_geo,
)
from ._convert import (
_in_scalar,
_out_scalar,
_in_collection,
_out_collection,
)
[docs]
def versions():
"""
Version numbers for the Python (wrapper) and C (wrapped) libraries.
Versions are output as strings of the form ``'X.Y.Z'``.
C and Python should match on ``X`` (major) and ``Y`` (minor),
but may differ on ``Z`` (patch).
Returns
-------
dict like ``{'c': 'X.Y.Z', 'python': 'A.B.C'}``
"""
from ..._version import __version__
v = {
'c': _cy.c_version(),
'python': __version__,
}
return v
[docs]
def str_to_int(h):
"""
Converts a hexadecimal string to an H3 64-bit integer index.
Parameters
----------
h : str
Hexadecimal string like ``'89754e64993ffff'``
Returns
-------
int
Unsigned 64-bit integer
"""
return _cy.str_to_int(h)
[docs]
def int_to_str(x):
"""
Converts an H3 64-bit integer index to a hexadecimal string.
Parameters
----------
x : int
Unsigned 64-bit integer
Returns
-------
str
Hexadecimal string like ``'89754e64993ffff'``
"""
return _cy.int_to_str(x)
[docs]
def get_num_cells(res):
"""
Return the total number of *cells* (hexagons and pentagons)
for the given resolution.
Returns
-------
int
"""
return _cy.get_num_cells(res)
[docs]
def average_hexagon_area(res, unit='km^2'):
"""
Return the average area of an H3 *hexagon*
for the given resolution.
This average *excludes* pentagons.
Parameters
----------
res : int
H3 resolution
unit: str
Unit for area result (``'km^2'``, ``'m^2'``, or ``'rads^2'``)
Returns
-------
float
"""
return _cy.average_hexagon_area(res, unit)
[docs]
def average_hexagon_edge_length(res, unit='km'):
"""
Return the average *hexagon* edge length
for the given resolution.
This average *excludes* pentagons.
Parameters
----------
res : int
H3 resolution
unit: str
Unit for length result (``'km'``, ``'m'``, or ``'rads'``)
Returns
-------
float
"""
return _cy.average_hexagon_edge_length(res, unit)
[docs]
def is_valid_cell(h):
"""
Validates an H3 cell (hexagon or pentagon).
Returns
-------
bool
"""
try:
h = _in_scalar(h)
return _cy.is_valid_cell(h)
except (ValueError, TypeError):
return False
[docs]
def is_valid_directed_edge(edge):
"""
Validates an H3 unidirectional edge.
Returns
-------
bool
"""
try:
e = _in_scalar(edge)
return _cy.is_valid_directed_edge(e)
except (ValueError, TypeError):
return False
[docs]
def latlng_to_cell(lat, lng, res):
"""
Return the cell containing the (lat, lng) point
for a given resolution.
Returns
-------
H3Cell
"""
return _out_scalar(_cy.latlng_to_cell(lat, lng, res))
[docs]
def cell_to_latlng(h):
"""
Return the center point of an H3 cell as a lat/lng pair.
Parameters
----------
h : H3Cell
Returns
-------
lat : float
Latitude
lng : float
Longitude
"""
h = _in_scalar(h)
return _cy.cell_to_latlng(h)
[docs]
def get_resolution(h):
"""
Return the resolution of an H3 cell.
Parameters
----------
h : H3Cell
Returns
-------
int
"""
# todo: could also work for edges
h = _in_scalar(h)
return _cy.get_resolution(h)
[docs]
def cell_to_parent(h, res=None):
"""
Get the parent of a cell.
Parameters
----------
h : H3Cell
res : int or None, optional
The resolution for the parent
If ``None``, then ``res = resolution(h) - 1``
Returns
-------
H3Cell
"""
h = _in_scalar(h)
p = _cy.cell_to_parent(h, res)
p = _out_scalar(p)
return p
[docs]
def grid_distance(h1, h2):
"""
Compute the grid distance between two cells.
The grid distance is defined as the length of the shortest
path between the cells in the graph formed by connecting
adjacent cells.
This function will raise an exception if the
cells are too far apart to compute the distance.
Parameters
----------
h1 : H3Cell
h2 : H3Cell
Returns
-------
int
"""
h1 = _in_scalar(h1)
h2 = _in_scalar(h2)
d = _cy.grid_distance(h1, h2)
return d
[docs]
def cell_to_boundary(h):
"""
Return tuple of lat/lng pairs describing the cell boundary.
Parameters
----------
h : H3Cell
Returns
-------
tuple of (lat, lng) tuples
"""
h = _in_scalar(h)
return _cy.cell_to_boundary(h)
[docs]
def grid_disk(h, k=1):
"""
Return unordered collection of cells with grid distance ``<= k`` from ``h``.
That is, the "filled-in" disk.
Parameters
----------
h : H3Cell
k : int
Size of disk.
Returns
-------
unordered collection of H3Cell
Notes
-----
There is currently no guaranteed order of the output cells.
"""
h = _in_scalar(h)
mv = _cy.grid_disk(h, k)
return _out_collection(mv)
[docs]
def grid_ring(h, k=1):
"""
Return unordered collection of cells with grid distance ``== k`` from ``h``.
That is, the "hollow" ring.
Parameters
----------
h : H3Cell
k : int
Size of ring.
Returns
-------
unordered collection of H3Cell
Notes
-----
There is currently no guaranteed order of the output cells.
"""
h = _in_scalar(h)
mv = _cy.grid_ring(h, k)
return _out_collection(mv)
[docs]
def cell_to_children_size(h, res=None):
"""
Number of children at resolution ``res`` of given cell.
Parameters
----------
h : H3Cell
res : int or None, optional
The resolution for the children.
If ``None``, then ``res = resolution(h) + 1``
Returns
-------
int
Count of children
"""
h = _in_scalar(h)
return _cy.cell_to_children_size(h, res)
[docs]
def cell_to_children(h, res=None):
"""
Children of a cell as an unordered collection.
Parameters
----------
h : H3Cell
res : int or None, optional
The resolution for the children.
If ``None``, then ``res = resolution(h) + 1``
Returns
-------
unordered collection of H3Cell
Notes
-----
There is currently no guaranteed order of the output cells.
"""
h = _in_scalar(h)
mv = _cy.cell_to_children(h, res)
return _out_collection(mv)
[docs]
def cell_to_child_pos(child, res_parent):
"""
Child position index of given cell, with respect to its parent at ``res_parent``.
The reverse operation can be done with ``child_pos_to_cell``.
Parameters
----------
child : H3Cell
res_parent : int
Returns
-------
int
Integer index of the child with respect to parent cell.
"""
child = _in_scalar(child)
return _cy.cell_to_child_pos(child, res_parent)
[docs]
def child_pos_to_cell(parent, res_child, child_pos):
"""
Get child H3 cell from a parent cell, child resolution, and child position index.
The reverse operation can be done with ``cell_to_child_pos``.
Parameters
----------
parent : H3Cell
res_child : int
Child cell resolution
child_pos : int
Integer position of child cell, releative to parent.
Returns
-------
H3Cell
"""
parent = _in_scalar(parent)
child = _cy.child_pos_to_cell(parent, res_child, child_pos)
child = _out_scalar(child)
return child
# todo: nogil for expensive C operation?
[docs]
def compact_cells(cells):
"""
Compact a collection of H3 cells by combining
smaller cells into larger cells, if all child cells
are present. Input cells must all share the same resolution.
Parameters
----------
cells : iterable of H3 Cells
Returns
-------
unordered collection of H3Cell
Notes
-----
There is currently no guaranteed order of the output cells.
"""
hu = _in_collection(cells)
hc = _cy.compact_cells(hu)
return _out_collection(hc)
[docs]
def uncompact_cells(cells, res):
"""
Reverse the ``compact_cells`` operation.
Return a collection of H3 cells, all of resolution ``res``.
Parameters
----------
cells : iterable of H3Cell
res : int
Resolution of desired output cells.
Returns
-------
unordered collection of H3Cell
Notes
-----
There is currently no guaranteed order of the output cells.
"""
# TODO: add test to make sure an error is returned when input contains cell
# smaller than output res.
hc = _in_collection(cells)
hu = _cy.uncompact_cells(hc, res)
return _out_collection(hu)
[docs]
def h3shape_to_cells(h3shape, res):
"""
Return the collection of H3 cells at a given resolution whose center points
are contained within an ``LatLngPoly`` or ``LatLngMultiPoly``.
Parameters
----------
h3shape : ``H3Shape``
res : int
Resolution of the output cells
Returns
-------
list of H3Cell
Examples
--------
>>> poly = LatLngPoly(
... [(37.68, -122.54), (37.68, -122.34), (37.82, -122.34),
... (37.82, -122.54)],
... )
>>> h3.h3shape_to_cells(poly, 6)
['862830807ffffff',
'862830827ffffff',
'86283082fffffff',
'862830877ffffff',
'862830947ffffff',
'862830957ffffff',
'86283095fffffff']
Notes
-----
There is currently no guaranteed order of the output cells.
"""
# todo: not sure if i want this dispatch logic here. maybe in the objects?
if isinstance(h3shape, LatLngPoly):
poly = h3shape
mv = _cy.polygon_to_cells(poly.outer, res=res, holes=poly.holes)
elif isinstance(h3shape, LatLngMultiPoly):
mpoly = h3shape
mv = _cy.polygons_to_cells(mpoly.polys, res=res)
elif isinstance(h3shape, H3Shape):
raise ValueError('Unrecognized H3Shape: ' + str(h3shape))
else:
raise ValueError('Unrecognized type: ' + str(type(h3shape)))
return _out_collection(mv)
[docs]
def polygon_to_cells(h3shape, res):
"""
Alias for ``h3shape_to_cells``.
"""
return h3shape_to_cells(h3shape, res)
[docs]
def h3shape_to_cells_experimental(h3shape, res, flags=0):
"""
Return the collection of H3 cells at a given resolution whose center points
are contained within an ``LatLngPoly`` or ``LatLngMultiPoly``.
Parameters
----------
h3shape : ``H3Shape``
res : int
Resolution of the output cells
flags : ``ContainmentMode``, int, or string
Containment mode flags
Returns
-------
list of H3Cell
Examples
--------
>>> poly = LatLngPoly(
... [(37.68, -122.54), (37.68, -122.34), (37.82, -122.34),
... (37.82, -122.54)],
... )
>>> h3.h3shape_to_cells_experimental(poly, 6, h3.ContainmentMode.containment_center)
['862830807ffffff',
'862830827ffffff',
'86283082fffffff',
'862830877ffffff',
'862830947ffffff',
'862830957ffffff',
'86283095fffffff']
Notes
-----
There is currently no guaranteed order of the output cells.
"""
if isinstance(flags, str):
try:
flags = ContainmentMode[flags]
except KeyError as e:
raise ValueError('Unrecognized flags: ' + flags) from e
if isinstance(flags, ContainmentMode):
flags = int(flags)
if not isinstance(flags, int):
raise ValueError(
'Flags should be ContainmentMode, str, or int, but got: ' + str(type(flags))
)
# todo: not sure if i want this dispatch logic here. maybe in the objects?
if isinstance(h3shape, LatLngPoly):
poly = h3shape
mv = _cy.polygon_to_cells_experimental(
poly.outer,
res=res,
holes=poly.holes,
flags=flags
)
elif isinstance(h3shape, LatLngMultiPoly):
mpoly = h3shape
mv = _cy.polygons_to_cells_experimental(mpoly.polys, res=res, flags=flags)
elif isinstance(h3shape, H3Shape):
raise ValueError('Unrecognized H3Shape: ' + str(h3shape))
else:
raise ValueError('Unrecognized type: ' + str(type(h3shape)))
return _out_collection(mv)
[docs]
def polygon_to_cells_experimental(h3shape, res, flags=0):
"""
Alias for ``h3shape_to_cells_experimental``.
"""
return h3shape_to_cells_experimental(h3shape, res, flags=flags)
[docs]
def cells_to_h3shape(cells, *, tight=True):
"""
Return an ``H3Shape`` describing the area covered by a collection of H3 cells.
Will return ``LatLngPoly`` or ``LatLngMultiPoly``.
Parameters
----------
cells : iterable of H3 cells
tight : bool
If True, return ``LatLngPoly`` if possible.
If False, always return ``LatLngMultiPoly``.
Returns
-------
LatLngPoly | LatLngMultiPoly
Examples
--------
>>> cells = ['8428309ffffffff', '842830dffffffff']
>>> h3.cells_to_h3shape(cells, tight=True)
<LatLngPoly: [10]>
>>> h3.cells_to_h3shape(cells, tight=False)
<LatLngMultiPoly: [10]>
"""
cells = _in_collection(cells)
mpoly = _cy.cells_to_multi_polygon(cells)
polys = [LatLngPoly(*poly) for poly in mpoly]
out = LatLngMultiPoly(*polys)
if tight and len(out) == 1:
out = out[0]
return out
[docs]
def geo_to_cells(geo, res):
"""Convert from ``__geo_interface__`` to cells.
Parameters
----------
geo : an object implementing ``__geo_interface__`` or a dictionary in that format.
Both ``LatLngPoly`` and ``LatLngMultiPoly`` implement the interface.
res : int
Resolution of desired output cells.
Notes
-----
There is currently no guaranteed order of the output cells.
"""
h3shape = geo_to_h3shape(geo)
return h3shape_to_cells(h3shape, res)
[docs]
def cells_to_geo(cells, tight=True):
"""
Convert from cells to a ``__geo_interface__`` dict.
Parameters
----------
cells : iterable of H3 Cells
tight : bool
When ``True``, returns an ``LatLngPoly`` when possible.
When ``False``, always returns an ``LatLngMultiPoly``.
Returns
-------
dict
in `__geo_interface__` format
"""
h3shape = cells_to_h3shape(cells, tight=tight)
return h3shape_to_geo(h3shape)
[docs]
def is_pentagon(h):
"""
Identify if an H3 cell is a pentagon.
Parameters
----------
h : H3Index
Returns
-------
bool
``True`` if input is a valid H3 cell which is a pentagon.
Notes
-----
A pentagon should *also* pass ``is_valid_cell()``.
Will return ``False`` for valid H3Edge.
"""
return _cy.is_pentagon(_in_scalar(h))
[docs]
def get_base_cell_number(h):
"""
Return the base cell *number* (``0`` to ``121``) of the given cell.
The base cell *number* and the H3Index are two different representations
of the same cell: the parent cell of resolution ``0``.
The base cell *number* is encoded within the corresponding
H3Index.
todo: could work with edges
Parameters
----------
h : H3Cell
Returns
-------
int
"""
return _cy.get_base_cell_number(_in_scalar(h))
[docs]
def are_neighbor_cells(h1, h2):
"""
Returns ``True`` if ``h1`` and ``h2`` are neighboring cells.
Parameters
----------
h1 : H3Cell
h2 : H3Cell
Returns
-------
bool
"""
h1 = _in_scalar(h1)
h2 = _in_scalar(h2)
return _cy.are_neighbor_cells(h1, h2)
[docs]
def cells_to_directed_edge(origin, destination):
"""
Create an H3 Index denoting a unidirectional edge.
The edge is constructed from neighboring cells ``origin`` and
``destination``.
Parameters
----------
origin : H3Cell
destination : H3Cell
Raises
------
ValueError
When cells are not adjacent.
Returns
-------
H3Edge
"""
o = _in_scalar(origin)
d = _in_scalar(destination)
e = _cy.cells_to_directed_edge(o, d)
e = _out_scalar(e)
return e
[docs]
def get_directed_edge_origin(e):
"""
Origin cell from an H3 directed edge.
Parameters
----------
e : H3Edge
Returns
-------
H3Cell
"""
e = _in_scalar(e)
o = _cy.get_directed_edge_origin(e)
o = _out_scalar(o)
return o
[docs]
def get_directed_edge_destination(e):
"""
Destination cell from an H3 directed edge.
Parameters
----------
e : H3Edge
Returns
-------
H3Cell
"""
e = _in_scalar(e)
d = _cy.get_directed_edge_destination(e)
d = _out_scalar(d)
return d
[docs]
def directed_edge_to_cells(e):
"""
Return (origin, destination) tuple from H3 directed edge
Parameters
----------
e : H3Edge
Returns
-------
H3Cell
Origin cell of edge
H3Cell
Destination cell of edge
"""
e = _in_scalar(e)
o, d = _cy.directed_edge_to_cells(e)
o, d = _out_scalar(o), _out_scalar(d)
return o, d
[docs]
def origin_to_directed_edges(origin):
"""
Return all directed edges starting from ``origin`` cell.
Parameters
----------
origin : H3Cell
Returns
-------
unordered collection of H3Edge
"""
mv = _cy.origin_to_directed_edges(_in_scalar(origin))
return _out_collection(mv)
[docs]
def directed_edge_to_boundary(edge):
"""
Returns points representing the edge (line of points
describing the boundary between two cells).
Parameters
----------
edge : H3Edge
Returns
-------
tuple of (lat, lng) tuples
"""
return _cy.directed_edge_to_boundary(_in_scalar(edge))
[docs]
def grid_path_cells(start, end):
"""
Returns the ordered collection of cells denoting a
minimum-length non-unique path between cells.
Parameters
----------
start : H3Cell
end : H3Cell
Returns
-------
ordered collection of H3Cell
Starting with ``start``, and ending with ``end``.
"""
mv = _cy.grid_path_cells(_in_scalar(start), _in_scalar(end))
return _out_collection(mv)
[docs]
def is_res_class_III(h):
"""
Determine if cell has orientation "Class II" or "Class III".
The orientation of pentagons/hexagons on the icosahedron can be one
of two types: "Class II" or "Class III".
All cells within a resolution have the same type, and the type
alternates between resolutions.
"Class II" cells have resolutions: 0,2,4,6,8,10,12,14
"Class III" cells have resolutions: 1,3,5,7,9,11,13,15
Parameters
----------
h : H3Cell
Returns
-------
bool
``True`` if ``h`` is "Class III".
``False`` if ``h`` is "Class II".
References
----------
1. https://uber.github.io/h3/#/documentation/core-library/coordinate-systems
"""
return _cy.is_res_class_iii(_in_scalar(h))
[docs]
def get_pentagons(res):
"""
Return all pentagons at a given resolution.
Parameters
----------
res : int
Resolution of the pentagons
Returns
-------
unordered collection of H3Cell
"""
mv = _cy.get_pentagons(res)
return _out_collection(mv)
[docs]
def get_res0_cells():
"""
Return all cells at resolution 0.
Parameters
----------
None
Returns
-------
unordered collection of H3Cell
Notes
-----
There is currently no guaranteed order of the output cells.
"""
mv = _cy.get_res0_cells()
return _out_collection(mv)
[docs]
def cell_to_center_child(h, res=None):
"""
Get the center child of a cell at some finer resolution.
Parameters
----------
h : H3Cell
res : int or None, optional
The resolution for the child cell
If ``None``, then ``res = resolution(h) + 1``
Returns
-------
H3Cell
"""
h = _in_scalar(h)
p = _cy.cell_to_center_child(h, res)
p = _out_scalar(p)
return p
[docs]
def get_icosahedron_faces(h):
"""
Return icosahedron faces intersecting a given H3 cell.
There are twenty possible faces, ranging from 0--19.
Note: Every interface returns a Python ``set`` of ``int``.
Parameters
----------
h : H3Cell
Returns
-------
Python ``set`` of ``int``
"""
h = _in_scalar(h)
faces = _cy.get_icosahedron_faces(h)
return faces
[docs]
def cell_to_local_ij(origin, h):
"""
Return local (i,j) coordinates of cell ``h`` in relation to ``origin`` cell
Parameters
----------
origin : H3Cell
Origin/central cell for defining i,j coordinates.
h: H3Cell
Destination cell whose i,j coordinates we'd like, based off
of the origin cell.
Returns
-------
Tuple (i, j) of integer local coordinates of cell ``h``
Notes
-----
The ``origin`` cell does not define (0, 0) for the IJ coordinate space.
(0, 0) refers to the center of the base cell containing origin at the
resolution of `origin`.
Subtracting the IJ coordinates of ``origin`` from every cell would get
you the property of (0, 0) being the ``origin``.
This is done so we don't need to keep recomputing the coordinates of
``origin`` if not needed.
"""
origin = _in_scalar(origin)
h = _in_scalar(h)
i, j = _cy.cell_to_local_ij(origin, h)
return i, j
[docs]
def local_ij_to_cell(origin, i, j):
"""
Return cell at local (i,j) position relative to the ``origin`` cell.
Parameters
----------
origin : H3Cell
Origin/central cell for defining i,j coordinates.
i, j: int
Integer coordinates with respect to ``origin`` cell.
Returns
-------
H3Cell at local (i,j) position relative to the ``origin`` cell
Notes
-----
The ``origin`` cell does not define (0, 0) for the IJ coordinate space.
(0, 0) refers to the center of the base cell containing origin at the
resolution of ``origin``.
Subtracting the IJ coordinates of ``origin`` from every cell would get
you the property of (0, 0) being the ``origin``.
This is done so we don't need to keep recomputing the coordinates of
``origin`` if not needed.
"""
origin = _in_scalar(origin)
h = _cy.local_ij_to_cell(origin, i, j)
h = _out_scalar(h)
return h
[docs]
def cell_area(h, unit='km^2'):
"""
Compute the spherical surface area of a specific H3 cell.
Parameters
----------
h : H3Cell
unit: str
Unit for area result (``'km^2'``, ``'m^2'``, or ``'rads^2'``)
Returns
-------
The area of the H3 cell in the given units
Notes
-----
This function breaks the cell into spherical triangles, and computes
their spherical area.
The function uses the spherical distance calculation given by
``great_circle_distance()``.
"""
h = _in_scalar(h)
return _cy.cell_area(h, unit=unit)
[docs]
def edge_length(e, unit='km'):
"""
Compute the spherical length of a specific H3 edge.
Parameters
----------
h : H3Cell
unit: str
Unit for length result (``'km'``, ``'m'``, or ``'rads'``)
Returns
-------
The length of the edge in the given units
Notes
-----
This function uses the spherical distance calculation given by
``great_circle_distance()``.
"""
e = _in_scalar(e)
return _cy.edge_length(e, unit=unit)
[docs]
def great_circle_distance(latlng1, latlng2, unit='km'):
"""
Compute the spherical distance between two (lat, lng) points.
AKA: great circle distance or "haversine" distance.
todo: overload to allow two cell inputs?
Parameters
----------
latlng1 : tuple
(lat, lng) tuple in degrees
latlng2 : tuple
(lat, lng) tuple in degrees
unit: str
Unit for distance result (``'km'``, ``'m'``, or ``'rads'``)
Returns
-------
The spherical distance between the points in the given units
"""
lat1, lng1 = latlng1
lat2, lng2 = latlng2
return _cy.great_circle_distance(
lat1, lng1,
lat2, lng2,
unit = unit
)
[docs]
def cell_to_vertex(h, vertex_num):
"""
Return a (specified) vertex of an H3 cell.
Parameters
----------
h : H3Cell
vertex_num : int
Vertex number (0-5)
Returns
-------
The vertex
"""
h = _in_scalar(h)
h = _cy.cell_to_vertex(h, vertex_num)
return _out_scalar(h)
[docs]
def cell_to_vertexes(h):
"""
Return a list of vertexes of an H3 cell.
The list will be of length 5 for pentagons and 6 for hexagons.
Parameters
----------
h : H3Cell
Returns
-------
A list of vertexes
"""
h = _in_scalar(h)
mv = _cy.cell_to_vertexes(h)
return _out_collection(mv)
[docs]
def vertex_to_latlng(v):
"""
Return latitude and longitude of a vertex.
Returns
-------
lat : float
Latitude
lng : float
Longitude
"""
v = _in_scalar(v)
return _cy.vertex_to_latlng(v)
[docs]
def is_valid_vertex(v):
"""
Validates an H3 vertex.
Returns
-------
bool
"""
try:
v = _in_scalar(v)
return _cy.is_valid_vertex(v)
except (ValueError, TypeError):
return False