orbit.constants package¶
Submodules¶
orbit.constants.constants module¶
-
class
orbit.constants.constants.
BacktestAnalyzeKeys
(value)¶ Bases:
enum.Enum
hash table keys for the dictionary of back-test aggregation analysis result
-
METRIC_GEO
= 'metric_geo'¶
-
METRIC_NAME
= 'metric_name'¶
-
METRIC_PER_BTMOD
= 'metric_per_btmod'¶
-
METRIC_PER_HORIZON
= 'metric_per_horizon'¶
-
-
class
orbit.constants.constants.
BacktestFitColumnNames
(value)¶ Bases:
enum.Enum
column names for the data frame of back-test fitting result
-
ACTUAL
= 'actual'¶
-
FORECAST_DATES
= 'forecast_dates'¶
-
PRED
= 'pred'¶
-
PRED_HORIZON
= 'pred_horizon'¶
-
TRAIN_END_DATE
= 'train_end_date'¶
-
TRAIN_START_DATE
= 'train_start_date'¶
-
-
class
orbit.constants.constants.
DateInfo
(value)¶ Bases:
enum.Enum
date_column: the data column name of the training/prediction data frame; starting_date: the date of first day of training data; format: yyyy-mm-dd date_interval: ‘day’, ‘week’, ‘month’
-
DATE_COLUMN
= 'date_column'¶
-
DATE_COLUMN_NAME
= 'date_column_name'¶
-
DATE_INTERVAL
= 'date_interval'¶
-
END_DATE
= 'end_date'¶
-
START_DATE
= 'start_date'¶
-
-
class
orbit.constants.constants.
EstimatorOptionsMapper
(value)¶ Bases:
enum.Enum
Mapper for available options of a downstream input given an input upstream (within some other set of options)
-
ENGINE_TO_SAMPLE
= {'pyro': ['map', 'vi'], 'stan': ['map', 'vi', 'mcmc']}¶
-
SAMPLE_TO_PREDICT
= {'map': ['map'], 'mcmc': ['mean', 'median', 'full'], 'vi': ['mean', 'median', 'full']}¶
-
-
class
orbit.constants.constants.
InferMethod
(value)¶ Bases:
enum.Enum
The predict method for all of the stan models. Often used are mean and median.
-
MAP
= 'map'¶
-
MARKOV_CHAIN_MONTE_CARLO
= 'mcmc'¶
-
VARIATIONAL_INFERENCE
= 'vi'¶
-
-
class
orbit.constants.constants.
PlotLabels
(value)¶ Bases:
enum.Enum
An enumeration.
-
ACTUAL_RESPONSE
= 'actual_response'¶
-
PREDICTED_RESPONSE
= 'predicted_response'¶
-
TRAINING_ACTUAL_RESPONSE
= 'training_actual_response'¶
-
-
class
orbit.constants.constants.
PredictMethod
(value)¶ Bases:
enum.Enum
The predict method for all of the stan models. Often used are mean and median.
-
FULL_SAMPLING
= 'full'¶
-
MAP
= 'map'¶
-
MEAN
= 'mean'¶
-
MEDIAN
= 'median'¶
-
-
class
orbit.constants.constants.
PredictedComponents
(value)¶ Bases:
enum.Enum
column names for the data frame of predicted result with decomposed components
-
REGRESSION
= 'regression'¶
-
SEASONALITY
= 'seasonality'¶
-
TREND
= 'trend'¶
-
-
class
orbit.constants.constants.
PredictionColumnNames
(value)¶ Bases:
enum.Enum
In the output of SLGTModel.transform() and SLGT.predict(), the column names if ‘return_decomposed_components’ = True.
-
ACTUAL_RESPONSE
= 'actual'¶
-
LEVEL
= 'level'¶
-
PREDICTED_RESPONSE
= 'predicted'¶
-
REGRESSOR
= 'regressor'¶
-
SEASONALITY
= 'seasonality'¶
-
-
class
orbit.constants.constants.
StanModelKeys
(value)¶ Bases:
enum.Enum
All of the keys in the trained stan model from uTS. For example, for LGT/SLGT, the model is the output of SLGT.fit() and input of SLGTModel.
-
DATE_INFO
= 'date_info'¶
-
MODELS
= 'models'¶
-
REGRESSOR_COLUMNS
= 'regressor_columns'¶
-
RESPONSE_COLUMN
= 'response_column'¶
-
STAN_INPUTS
= 'stan_inputs'¶
-
orbit.constants.dlt module¶
-
class
orbit.constants.dlt.
BaseSamplingParameters
(value)¶ Bases:
enum.Enum
base parameters in posteriors sampling
-
LEVEL_SMOOTHING_FACTOR
= 'lev_sm'¶
-
LOCAL_TREND
= 'lt_sum'¶
-
LOCAL_TREND_LEVELS
= 'l'¶
-
LOCAL_TREND_SLOPES
= 'b'¶
-
RESIDUAL_DEGREE_OF_FREEDOM
= 'nu'¶
-
RESIDUAL_SIGMA
= 'obs_sigma'¶
-
SLOPE_SMOOTHING_FACTOR
= 'slp_sm'¶
-
-
class
orbit.constants.dlt.
DataInputMapper
(value)¶ Bases:
enum.Enum
mapping from object input to stan file
-
AUTO_RIDGE_SCALE
= 'AUTO_RIDGE_SCALE'¶
-
DAMPED_FACTOR
= 'DAMPED_FACTOR'¶
-
LASSO_SCALE
= 'LASSO_SCALE'¶
-
-
class
orbit.constants.dlt.
GlobalTrendOption
(value)¶ Bases:
enum.Enum
An enumeration.
-
flat
= 3¶
-
linear
= 0¶
-
logistic
= 2¶
-
loglinear
= 1¶
-
-
class
orbit.constants.dlt.
GlobalTrendSamplingParameters
(value)¶ Bases:
enum.Enum
An enumeration.
-
GLOBAL_TREND
= 'gt_sum'¶
-
GLOBAL_TREND_LEVEL
= 'gl'¶
-
GLOBAL_TREND_SLOPE
= 'gb'¶
-
-
class
orbit.constants.dlt.
LatentSamplingParameters
(value)¶ Bases:
enum.Enum
latent variables to be sampled
-
INITIAL_SEASONALITY
= 'init_sea'¶
-
REGRESSION_NEGATIVE_COEFFICIENTS
= 'nr_beta'¶
-
REGRESSION_POSITIVE_COEFFICIENTS
= 'pr_beta'¶
-
REGRESSION_REGULAR_COEFFICIENTS
= 'rr_beta'¶
-
-
class
orbit.constants.dlt.
RegressionPenalty
(value)¶ Bases:
enum.Enum
An enumeration.
-
auto_ridge
= 2¶
-
fixed_ridge
= 0¶
-
lasso
= 1¶
-
orbit.constants.lgt module¶
-
class
orbit.constants.lgt.
BaseSamplingParameters
(value)¶ Bases:
enum.Enum
base parameters in posteriors sampling
-
GLOBAL_TREND_COEF
= 'gt_coef'¶
-
GLOBAL_TREND_POWER
= 'gt_pow'¶
-
LEVEL_SMOOTHING_FACTOR
= 'lev_sm'¶
-
LOCAL_GLOBAL_TREND_SUMS
= 'lgt_sum'¶
-
LOCAL_TREND_COEF
= 'lt_coef'¶
-
LOCAL_TREND_LEVELS
= 'l'¶
-
LOCAL_TREND_SLOPES
= 'b'¶
-
RESIDUAL_DEGREE_OF_FREEDOM
= 'nu'¶
-
RESIDUAL_SIGMA
= 'obs_sigma'¶
-
SLOPE_SMOOTHING_FACTOR
= 'slp_sm'¶
-
-
class
orbit.constants.lgt.
DataInputMapper
(value)¶ Bases:
enum.Enum
mapping from object input to stan file
-
AUTO_RIDGE_SCALE
= 'AUTO_RIDGE_SCALE'¶
-
LASSO_SCALE
= 'LASSO_SCALE'¶
-
-
class
orbit.constants.lgt.
LatentSamplingParameters
(value)¶ Bases:
enum.Enum
latent variables to be sampled
-
INITIAL_SEASONALITY
= 'init_sea'¶
-
REGRESSION_NEGATIVE_COEFFICIENTS
= 'nr_beta'¶
-
REGRESSION_POSITIVE_COEFFICIENTS
= 'pr_beta'¶
-
REGRESSION_REGULAR_COEFFICIENTS
= 'rr_beta'¶
-
-
class
orbit.constants.lgt.
RegressionPenalty
(value)¶ Bases:
enum.Enum
An enumeration.
-
auto_ridge
= 2¶
-
fixed_ridge
= 0¶
-
lasso
= 1¶
-
orbit.constants.palette module¶
-
class
orbit.constants.palette.
QualitativePalette
(value)¶ Bases:
enum.Enum
Palette for visualizing discrete categorical data
-
Bar5
= ['#ef476fff', '#ffd166ff', '#06d6a0ff', '#118ab2ff', '#073b4cff']¶
-
Line4
= ['#e6c72b', '#2be669', '#2b4ae6', '#e62ba8']¶
-
PostQ
= ['#1fc600', '#ff4500']¶
-
Rainbow8
= ['#ffadadff', '#ffd6a5ff', '#fdffb6ff', '#caffbfff', '#9bf6ffff', '#a0c4ffff', '#bdb2ffff', '#ffc6ffff']¶
-
Stack
= ['#12939A', '#F15C17', '#DDB27C', '#88572C', '#FF991F', '#DA70BF', '#125C77', '#4DC19C', '#776E57', '#17B8BE', '#F6D18A', '#B7885E', '#FFCB99', '#F89570', '#829AE3', '#E79FD5', '#1E96BE', '#89DAC1', '#B3AD9E']¶
-