orbit.constants package¶
Submodules¶
orbit.constants.constants module¶
- 
class 
orbit.constants.constants.BacktestAnalyzeKeys(value)¶ Bases:
enum.Enumhash table keys for the dictionary of back-test aggregation analysis result
- 
METRIC_GEO= 'metric_geo'¶ 
- 
METRIC_NAME= 'metric_name'¶ 
- 
METRIC_PER_BTMOD= 'metric_per_btmod'¶ 
- 
METRIC_PER_HORIZON= 'metric_per_horizon'¶ 
- 
 
- 
class 
orbit.constants.constants.BacktestFitColumnNames(value)¶ Bases:
enum.Enumcolumn names for the data frame of back-test fitting result
- 
ACTUAL= 'actual'¶ 
- 
FORECAST_DATES= 'forecast_dates'¶ 
- 
PRED= 'pred'¶ 
- 
PRED_HORIZON= 'pred_horizon'¶ 
- 
TRAIN_END_DATE= 'train_end_date'¶ 
- 
TRAIN_START_DATE= 'train_start_date'¶ 
- 
 
- 
class 
orbit.constants.constants.DateInfo(value)¶ Bases:
enum.Enumdate_column: the data column name of the training/prediction data frame; starting_date: the date of first day of training data; format: yyyy-mm-dd date_interval: ‘day’, ‘week’, ‘month’
- 
DATE_COLUMN= 'date_column'¶ 
- 
DATE_COLUMN_NAME= 'date_column_name'¶ 
- 
DATE_INTERVAL= 'date_interval'¶ 
- 
END_DATE= 'end_date'¶ 
- 
START_DATE= 'start_date'¶ 
- 
 
- 
class 
orbit.constants.constants.EstimatorOptionsMapper(value)¶ Bases:
enum.EnumMapper for available options of a downstream input given an input upstream (within some other set of options)
- 
ENGINE_TO_SAMPLE= {'pyro': ['map', 'vi'], 'stan': ['map', 'vi', 'mcmc']}¶ 
- 
SAMPLE_TO_PREDICT= {'map': ['map'], 'mcmc': ['mean', 'median', 'full'], 'vi': ['mean', 'median', 'full']}¶ 
- 
 
- 
class 
orbit.constants.constants.InferMethod(value)¶ Bases:
enum.EnumThe predict method for all of the stan models. Often used are mean and median.
- 
MAP= 'map'¶ 
- 
MARKOV_CHAIN_MONTE_CARLO= 'mcmc'¶ 
- 
VARIATIONAL_INFERENCE= 'vi'¶ 
- 
 
- 
class 
orbit.constants.constants.PlotLabels(value)¶ Bases:
enum.EnumAn enumeration.
- 
ACTUAL_RESPONSE= 'actual_response'¶ 
- 
PREDICTED_RESPONSE= 'predicted_response'¶ 
- 
TRAINING_ACTUAL_RESPONSE= 'training_actual_response'¶ 
- 
 
- 
class 
orbit.constants.constants.PredictMethod(value)¶ Bases:
enum.EnumThe predict method for all of the stan models. Often used are mean and median.
- 
FULL_SAMPLING= 'full'¶ 
- 
MAP= 'map'¶ 
- 
MEAN= 'mean'¶ 
- 
MEDIAN= 'median'¶ 
- 
 
- 
class 
orbit.constants.constants.PredictedComponents(value)¶ Bases:
enum.Enumcolumn names for the data frame of predicted result with decomposed components
- 
REGRESSION= 'regression'¶ 
- 
SEASONALITY= 'seasonality'¶ 
- 
TREND= 'trend'¶ 
- 
 
- 
class 
orbit.constants.constants.PredictionColumnNames(value)¶ Bases:
enum.EnumIn the output of SLGTModel.transform() and SLGT.predict(), the column names if ‘return_decomposed_components’ = True.
- 
ACTUAL_RESPONSE= 'actual'¶ 
- 
LEVEL= 'level'¶ 
- 
PREDICTED_RESPONSE= 'predicted'¶ 
- 
REGRESSOR= 'regressor'¶ 
- 
SEASONALITY= 'seasonality'¶ 
- 
 
- 
class 
orbit.constants.constants.StanModelKeys(value)¶ Bases:
enum.EnumAll of the keys in the trained stan model from uTS. For example, for LGT/SLGT, the model is the output of SLGT.fit() and input of SLGTModel.
- 
DATE_INFO= 'date_info'¶ 
- 
MODELS= 'models'¶ 
- 
REGRESSOR_COLUMNS= 'regressor_columns'¶ 
- 
RESPONSE_COLUMN= 'response_column'¶ 
- 
STAN_INPUTS= 'stan_inputs'¶ 
- 
 
orbit.constants.dlt module¶
- 
class 
orbit.constants.dlt.BaseSamplingParameters(value)¶ Bases:
enum.Enumbase parameters in posteriors sampling
- 
LEVEL_SMOOTHING_FACTOR= 'lev_sm'¶ 
- 
LOCAL_TREND= 'lt_sum'¶ 
- 
LOCAL_TREND_LEVELS= 'l'¶ 
- 
LOCAL_TREND_SLOPES= 'b'¶ 
- 
RESIDUAL_DEGREE_OF_FREEDOM= 'nu'¶ 
- 
RESIDUAL_SIGMA= 'obs_sigma'¶ 
- 
SLOPE_SMOOTHING_FACTOR= 'slp_sm'¶ 
- 
 
- 
class 
orbit.constants.dlt.DataInputMapper(value)¶ Bases:
enum.Enummapping from object input to stan file
- 
AUTO_RIDGE_SCALE= 'AUTO_RIDGE_SCALE'¶ 
- 
DAMPED_FACTOR= 'DAMPED_FACTOR'¶ 
- 
LASSO_SCALE= 'LASSO_SCALE'¶ 
- 
 
- 
class 
orbit.constants.dlt.GlobalTrendOption(value)¶ Bases:
enum.EnumAn enumeration.
- 
flat= 3¶ 
- 
linear= 0¶ 
- 
logistic= 2¶ 
- 
loglinear= 1¶ 
- 
 
- 
class 
orbit.constants.dlt.GlobalTrendSamplingParameters(value)¶ Bases:
enum.EnumAn enumeration.
- 
GLOBAL_TREND= 'gt_sum'¶ 
- 
GLOBAL_TREND_LEVEL= 'gl'¶ 
- 
GLOBAL_TREND_SLOPE= 'gb'¶ 
- 
 
- 
class 
orbit.constants.dlt.LatentSamplingParameters(value)¶ Bases:
enum.Enumlatent variables to be sampled
- 
INITIAL_SEASONALITY= 'init_sea'¶ 
- 
REGRESSION_NEGATIVE_COEFFICIENTS= 'nr_beta'¶ 
- 
REGRESSION_POSITIVE_COEFFICIENTS= 'pr_beta'¶ 
- 
REGRESSION_REGULAR_COEFFICIENTS= 'rr_beta'¶ 
- 
 
- 
class 
orbit.constants.dlt.RegressionPenalty(value)¶ Bases:
enum.EnumAn enumeration.
- 
auto_ridge= 2¶ 
- 
fixed_ridge= 0¶ 
- 
lasso= 1¶ 
- 
 
orbit.constants.lgt module¶
- 
class 
orbit.constants.lgt.BaseSamplingParameters(value)¶ Bases:
enum.Enumbase parameters in posteriors sampling
- 
GLOBAL_TREND_COEF= 'gt_coef'¶ 
- 
GLOBAL_TREND_POWER= 'gt_pow'¶ 
- 
LEVEL_SMOOTHING_FACTOR= 'lev_sm'¶ 
- 
LOCAL_GLOBAL_TREND_SUMS= 'lgt_sum'¶ 
- 
LOCAL_TREND_COEF= 'lt_coef'¶ 
- 
LOCAL_TREND_LEVELS= 'l'¶ 
- 
LOCAL_TREND_SLOPES= 'b'¶ 
- 
RESIDUAL_DEGREE_OF_FREEDOM= 'nu'¶ 
- 
RESIDUAL_SIGMA= 'obs_sigma'¶ 
- 
SLOPE_SMOOTHING_FACTOR= 'slp_sm'¶ 
- 
 
- 
class 
orbit.constants.lgt.DataInputMapper(value)¶ Bases:
enum.Enummapping from object input to stan file
- 
AUTO_RIDGE_SCALE= 'AUTO_RIDGE_SCALE'¶ 
- 
LASSO_SCALE= 'LASSO_SCALE'¶ 
- 
 
- 
class 
orbit.constants.lgt.LatentSamplingParameters(value)¶ Bases:
enum.Enumlatent variables to be sampled
- 
INITIAL_SEASONALITY= 'init_sea'¶ 
- 
REGRESSION_NEGATIVE_COEFFICIENTS= 'nr_beta'¶ 
- 
REGRESSION_POSITIVE_COEFFICIENTS= 'pr_beta'¶ 
- 
REGRESSION_REGULAR_COEFFICIENTS= 'rr_beta'¶ 
- 
 
- 
class 
orbit.constants.lgt.RegressionPenalty(value)¶ Bases:
enum.EnumAn enumeration.
- 
auto_ridge= 2¶ 
- 
fixed_ridge= 0¶ 
- 
lasso= 1¶ 
- 
 
orbit.constants.palette module¶
- 
class 
orbit.constants.palette.QualitativePalette(value)¶ Bases:
enum.EnumPalette for visualizing discrete categorical data
- 
Bar5= ['#ef476fff', '#ffd166ff', '#06d6a0ff', '#118ab2ff', '#073b4cff']¶ 
- 
Line4= ['#e6c72b', '#2be669', '#2b4ae6', '#e62ba8']¶ 
- 
PostQ= ['#1fc600', '#ff4500']¶ 
- 
Rainbow8= ['#ffadadff', '#ffd6a5ff', '#fdffb6ff', '#caffbfff', '#9bf6ffff', '#a0c4ffff', '#bdb2ffff', '#ffc6ffff']¶ 
- 
Stack= ['#12939A', '#F15C17', '#DDB27C', '#88572C', '#FF991F', '#DA70BF', '#125C77', '#4DC19C', '#776E57', '#17B8BE', '#F6D18A', '#B7885E', '#FFCB99', '#F89570', '#829AE3', '#E79FD5', '#1E96BE', '#89DAC1', '#B3AD9E']¶ 
-