orbit.constants package¶
Submodules¶
orbit.constants.constants module¶
-
class
orbit.constants.constants.BacktestAnalyzeKeys(value)¶ Bases:
enum.Enumhash table keys for the dictionary of back-test aggregation analysis result
-
METRIC_GEO= 'metric_geo'¶
-
METRIC_NAME= 'metric_name'¶
-
METRIC_PER_BTMOD= 'metric_per_btmod'¶
-
METRIC_PER_HORIZON= 'metric_per_horizon'¶
-
-
class
orbit.constants.constants.BacktestFitColumnNames(value)¶ Bases:
enum.Enumcolumn names for the data frame of back-test fitting result
-
ACTUAL= 'actual'¶
-
FORECAST_DATES= 'forecast_dates'¶
-
PRED= 'pred'¶
-
PRED_HORIZON= 'pred_horizon'¶
-
TRAIN_END_DATE= 'train_end_date'¶
-
TRAIN_START_DATE= 'train_start_date'¶
-
-
class
orbit.constants.constants.DateInfo(value)¶ Bases:
enum.Enumdate_column: the data column name of the training/prediction data frame; starting_date: the date of first day of training data; format: yyyy-mm-dd date_interval: ‘day’, ‘week’, ‘month’
-
DATE_COLUMN= 'date_column'¶
-
DATE_COLUMN_NAME= 'date_column_name'¶
-
DATE_INTERVAL= 'date_interval'¶
-
END_DATE= 'end_date'¶
-
START_DATE= 'start_date'¶
-
-
class
orbit.constants.constants.EstimatorOptionsMapper(value)¶ Bases:
enum.EnumMapper for available options of a downstream input given an input upstream (within some other set of options)
-
ENGINE_TO_SAMPLE= {'pyro': ['map', 'vi'], 'stan': ['map', 'vi', 'mcmc']}¶
-
SAMPLE_TO_PREDICT= {'map': ['map'], 'mcmc': ['mean', 'median', 'full'], 'vi': ['mean', 'median', 'full']}¶
-
-
class
orbit.constants.constants.InferMethod(value)¶ Bases:
enum.EnumThe predict method for all of the stan models. Often used are mean and median.
-
MAP= 'map'¶
-
MARKOV_CHAIN_MONTE_CARLO= 'mcmc'¶
-
VARIATIONAL_INFERENCE= 'vi'¶
-
-
class
orbit.constants.constants.PlotLabels(value)¶ Bases:
enum.EnumAn enumeration.
-
ACTUAL_RESPONSE= 'actual_response'¶
-
PREDICTED_RESPONSE= 'predicted_response'¶
-
TRAINING_ACTUAL_RESPONSE= 'training_actual_response'¶
-
-
class
orbit.constants.constants.PredictMethod(value)¶ Bases:
enum.EnumThe predict method for all of the stan models. Often used are mean and median.
-
FULL_SAMPLING= 'full'¶
-
MAP= 'map'¶
-
MEAN= 'mean'¶
-
MEDIAN= 'median'¶
-
-
class
orbit.constants.constants.PredictedComponents(value)¶ Bases:
enum.Enumcolumn names for the data frame of predicted result with decomposed components
-
REGRESSION= 'regression'¶
-
SEASONALITY= 'seasonality'¶
-
TREND= 'trend'¶
-
-
class
orbit.constants.constants.PredictionColumnNames(value)¶ Bases:
enum.EnumIn the output of SLGTModel.transform() and SLGT.predict(), the column names if ‘return_decomposed_components’ = True.
-
ACTUAL_RESPONSE= 'actual'¶
-
LEVEL= 'level'¶
-
PREDICTED_RESPONSE= 'predicted'¶
-
REGRESSOR= 'regressor'¶
-
SEASONALITY= 'seasonality'¶
-
-
class
orbit.constants.constants.StanModelKeys(value)¶ Bases:
enum.EnumAll of the keys in the trained stan model from uTS. For example, for LGT/SLGT, the model is the output of SLGT.fit() and input of SLGTModel.
-
DATE_INFO= 'date_info'¶
-
MODELS= 'models'¶
-
REGRESSOR_COLUMNS= 'regressor_columns'¶
-
RESPONSE_COLUMN= 'response_column'¶
-
STAN_INPUTS= 'stan_inputs'¶
-
orbit.constants.dlt module¶
-
class
orbit.constants.dlt.BaseSamplingParameters(value)¶ Bases:
enum.Enumbase parameters in posteriors sampling
-
LEVEL_SMOOTHING_FACTOR= 'lev_sm'¶
-
LOCAL_TREND= 'lt_sum'¶
-
LOCAL_TREND_LEVELS= 'l'¶
-
LOCAL_TREND_SLOPES= 'b'¶
-
RESIDUAL_DEGREE_OF_FREEDOM= 'nu'¶
-
RESIDUAL_SIGMA= 'obs_sigma'¶
-
SLOPE_SMOOTHING_FACTOR= 'slp_sm'¶
-
-
class
orbit.constants.dlt.DataInputMapper(value)¶ Bases:
enum.Enummapping from object input to stan file
-
AUTO_RIDGE_SCALE= 'AUTO_RIDGE_SCALE'¶
-
DAMPED_FACTOR= 'DAMPED_FACTOR'¶
-
LASSO_SCALE= 'LASSO_SCALE'¶
-
-
class
orbit.constants.dlt.GlobalTrendOption(value)¶ Bases:
enum.EnumAn enumeration.
-
flat= 3¶
-
linear= 0¶
-
logistic= 2¶
-
loglinear= 1¶
-
-
class
orbit.constants.dlt.GlobalTrendSamplingParameters(value)¶ Bases:
enum.EnumAn enumeration.
-
GLOBAL_TREND= 'gt_sum'¶
-
GLOBAL_TREND_LEVEL= 'gl'¶
-
GLOBAL_TREND_SLOPE= 'gb'¶
-
-
class
orbit.constants.dlt.LatentSamplingParameters(value)¶ Bases:
enum.Enumlatent variables to be sampled
-
INITIAL_SEASONALITY= 'init_sea'¶
-
REGRESSION_NEGATIVE_COEFFICIENTS= 'nr_beta'¶
-
REGRESSION_POSITIVE_COEFFICIENTS= 'pr_beta'¶
-
REGRESSION_REGULAR_COEFFICIENTS= 'rr_beta'¶
-
-
class
orbit.constants.dlt.RegressionPenalty(value)¶ Bases:
enum.EnumAn enumeration.
-
auto_ridge= 2¶
-
fixed_ridge= 0¶
-
lasso= 1¶
-
orbit.constants.lgt module¶
-
class
orbit.constants.lgt.BaseSamplingParameters(value)¶ Bases:
enum.Enumbase parameters in posteriors sampling
-
GLOBAL_TREND_COEF= 'gt_coef'¶
-
GLOBAL_TREND_POWER= 'gt_pow'¶
-
LEVEL_SMOOTHING_FACTOR= 'lev_sm'¶
-
LOCAL_GLOBAL_TREND_SUMS= 'lgt_sum'¶
-
LOCAL_TREND_COEF= 'lt_coef'¶
-
LOCAL_TREND_LEVELS= 'l'¶
-
LOCAL_TREND_SLOPES= 'b'¶
-
RESIDUAL_DEGREE_OF_FREEDOM= 'nu'¶
-
RESIDUAL_SIGMA= 'obs_sigma'¶
-
SLOPE_SMOOTHING_FACTOR= 'slp_sm'¶
-
-
class
orbit.constants.lgt.DataInputMapper(value)¶ Bases:
enum.Enummapping from object input to stan file
-
AUTO_RIDGE_SCALE= 'AUTO_RIDGE_SCALE'¶
-
LASSO_SCALE= 'LASSO_SCALE'¶
-
-
class
orbit.constants.lgt.LatentSamplingParameters(value)¶ Bases:
enum.Enumlatent variables to be sampled
-
INITIAL_SEASONALITY= 'init_sea'¶
-
REGRESSION_NEGATIVE_COEFFICIENTS= 'nr_beta'¶
-
REGRESSION_POSITIVE_COEFFICIENTS= 'pr_beta'¶
-
REGRESSION_REGULAR_COEFFICIENTS= 'rr_beta'¶
-
-
class
orbit.constants.lgt.RegressionPenalty(value)¶ Bases:
enum.EnumAn enumeration.
-
auto_ridge= 2¶
-
fixed_ridge= 0¶
-
lasso= 1¶
-
orbit.constants.palette module¶
-
class
orbit.constants.palette.QualitativePalette(value)¶ Bases:
enum.EnumPalette for visualizing discrete categorical data
-
Bar5= ['#ef476fff', '#ffd166ff', '#06d6a0ff', '#118ab2ff', '#073b4cff']¶
-
Line4= ['#e6c72b', '#2be669', '#2b4ae6', '#e62ba8']¶
-
PostQ= ['#1fc600', '#ff4500']¶
-
Rainbow8= ['#ffadadff', '#ffd6a5ff', '#fdffb6ff', '#caffbfff', '#9bf6ffff', '#a0c4ffff', '#bdb2ffff', '#ffc6ffff']¶
-
Stack= ['#12939A', '#F15C17', '#DDB27C', '#88572C', '#FF991F', '#DA70BF', '#125C77', '#4DC19C', '#776E57', '#17B8BE', '#F6D18A', '#B7885E', '#FFCB99', '#F89570', '#829AE3', '#E79FD5', '#1E96BE', '#89DAC1', '#B3AD9E']¶
-