orbit.constants package¶
Submodules¶
orbit.constants.constants module¶
- 
class orbit.constants.constants.BacktestAnalyzeKeys(value)¶
- Bases: - enum.Enum- hash table keys for the dictionary of back-test aggregation analysis result - 
METRIC_GEO= 'metric_geo'¶
 - 
METRIC_NAME= 'metric_name'¶
 - 
METRIC_PER_BTMOD= 'metric_per_btmod'¶
 - 
METRIC_PER_HORIZON= 'metric_per_horizon'¶
 
- 
- 
class orbit.constants.constants.BacktestFitColumnNames(value)¶
- Bases: - enum.Enum- column names for the data frame of back-test fitting result - 
ACTUAL= 'actual'¶
 - 
FORECAST_DATES= 'forecast_dates'¶
 - 
PRED= 'pred'¶
 - 
PRED_HORIZON= 'pred_horizon'¶
 - 
TRAIN_END_DATE= 'train_end_date'¶
 - 
TRAIN_START_DATE= 'train_start_date'¶
 
- 
- 
class orbit.constants.constants.DateInfo(value)¶
- Bases: - enum.Enum- date_column: the data column name of the training/prediction data frame; starting_date: the date of first day of training data; format: yyyy-mm-dd date_interval: ‘day’, ‘week’, ‘month’ - 
DATE_COLUMN= 'date_column'¶
 - 
DATE_COLUMN_NAME= 'date_column_name'¶
 - 
DATE_INTERVAL= 'date_interval'¶
 - 
END_DATE= 'end_date'¶
 - 
START_DATE= 'start_date'¶
 
- 
- 
class orbit.constants.constants.EstimatorOptionsMapper(value)¶
- Bases: - enum.Enum- Mapper for available options of a downstream input given an input upstream (within some other set of options) - 
ENGINE_TO_SAMPLE= {'pyro': ['map', 'vi'], 'stan': ['map', 'vi', 'mcmc']}¶
 - 
SAMPLE_TO_PREDICT= {'map': ['map'], 'mcmc': ['mean', 'median', 'full'], 'vi': ['mean', 'median', 'full']}¶
 
- 
- 
class orbit.constants.constants.InferMethod(value)¶
- Bases: - enum.Enum- The predict method for all of the stan models. Often used are mean and median. - 
MAP= 'map'¶
 - 
MARKOV_CHAIN_MONTE_CARLO= 'mcmc'¶
 - 
VARIATIONAL_INFERENCE= 'vi'¶
 
- 
- 
class orbit.constants.constants.PlotLabels(value)¶
- Bases: - enum.Enum- An enumeration. - 
ACTUAL_RESPONSE= 'actual_response'¶
 - 
PREDICTED_RESPONSE= 'predicted_response'¶
 - 
TRAINING_ACTUAL_RESPONSE= 'training_actual_response'¶
 
- 
- 
class orbit.constants.constants.PredictMethod(value)¶
- Bases: - enum.Enum- The predict method for all of the stan models. Often used are mean and median. - 
FULL_SAMPLING= 'full'¶
 - 
MAP= 'map'¶
 - 
MEAN= 'mean'¶
 - 
MEDIAN= 'median'¶
 
- 
- 
class orbit.constants.constants.PredictedComponents(value)¶
- Bases: - enum.Enum- column names for the data frame of predicted result with decomposed components - 
REGRESSION= 'regression'¶
 - 
SEASONALITY= 'seasonality'¶
 - 
TREND= 'trend'¶
 
- 
- 
class orbit.constants.constants.PredictionColumnNames(value)¶
- Bases: - enum.Enum- In the output of SLGTModel.transform() and SLGT.predict(), the column names if ‘return_decomposed_components’ = True. - 
ACTUAL_RESPONSE= 'actual'¶
 - 
LEVEL= 'level'¶
 - 
PREDICTED_RESPONSE= 'predicted'¶
 - 
REGRESSOR= 'regressor'¶
 - 
SEASONALITY= 'seasonality'¶
 
- 
- 
class orbit.constants.constants.StanModelKeys(value)¶
- Bases: - enum.Enum- All of the keys in the trained stan model from uTS. For example, for LGT/SLGT, the model is the output of SLGT.fit() and input of SLGTModel. - 
DATE_INFO= 'date_info'¶
 - 
MODELS= 'models'¶
 - 
REGRESSOR_COLUMNS= 'regressor_columns'¶
 - 
RESPONSE_COLUMN= 'response_column'¶
 - 
STAN_INPUTS= 'stan_inputs'¶
 
- 
orbit.constants.dlt module¶
- 
class orbit.constants.dlt.BaseSamplingParameters(value)¶
- Bases: - enum.Enum- base parameters in posteriors sampling - 
LEVEL_SMOOTHING_FACTOR= 'lev_sm'¶
 - 
LOCAL_TREND= 'lt_sum'¶
 - 
LOCAL_TREND_LEVELS= 'l'¶
 - 
LOCAL_TREND_SLOPES= 'b'¶
 - 
RESIDUAL_DEGREE_OF_FREEDOM= 'nu'¶
 - 
RESIDUAL_SIGMA= 'obs_sigma'¶
 - 
SLOPE_SMOOTHING_FACTOR= 'slp_sm'¶
 
- 
- 
class orbit.constants.dlt.DataInputMapper(value)¶
- Bases: - enum.Enum- mapping from object input to stan file - 
AUTO_RIDGE_SCALE= 'AUTO_RIDGE_SCALE'¶
 - 
DAMPED_FACTOR= 'DAMPED_FACTOR'¶
 - 
LASSO_SCALE= 'LASSO_SCALE'¶
 
- 
- 
class orbit.constants.dlt.GlobalTrendOption(value)¶
- Bases: - enum.Enum- An enumeration. - 
flat= 3¶
 - 
linear= 0¶
 - 
logistic= 2¶
 - 
loglinear= 1¶
 
- 
- 
class orbit.constants.dlt.GlobalTrendSamplingParameters(value)¶
- Bases: - enum.Enum- An enumeration. - 
GLOBAL_TREND= 'gt_sum'¶
 - 
GLOBAL_TREND_LEVEL= 'gl'¶
 - 
GLOBAL_TREND_SLOPE= 'gb'¶
 
- 
- 
class orbit.constants.dlt.LatentSamplingParameters(value)¶
- Bases: - enum.Enum- latent variables to be sampled - 
INITIAL_SEASONALITY= 'init_sea'¶
 - 
REGRESSION_NEGATIVE_COEFFICIENTS= 'nr_beta'¶
 - 
REGRESSION_POSITIVE_COEFFICIENTS= 'pr_beta'¶
 - 
REGRESSION_REGULAR_COEFFICIENTS= 'rr_beta'¶
 
- 
- 
class orbit.constants.dlt.RegressionPenalty(value)¶
- Bases: - enum.Enum- An enumeration. - 
auto_ridge= 2¶
 - 
fixed_ridge= 0¶
 - 
lasso= 1¶
 
- 
orbit.constants.lgt module¶
- 
class orbit.constants.lgt.BaseSamplingParameters(value)¶
- Bases: - enum.Enum- base parameters in posteriors sampling - 
GLOBAL_TREND_COEF= 'gt_coef'¶
 - 
GLOBAL_TREND_POWER= 'gt_pow'¶
 - 
LEVEL_SMOOTHING_FACTOR= 'lev_sm'¶
 - 
LOCAL_GLOBAL_TREND_SUMS= 'lgt_sum'¶
 - 
LOCAL_TREND_COEF= 'lt_coef'¶
 - 
LOCAL_TREND_LEVELS= 'l'¶
 - 
LOCAL_TREND_SLOPES= 'b'¶
 - 
RESIDUAL_DEGREE_OF_FREEDOM= 'nu'¶
 - 
RESIDUAL_SIGMA= 'obs_sigma'¶
 - 
SLOPE_SMOOTHING_FACTOR= 'slp_sm'¶
 
- 
- 
class orbit.constants.lgt.DataInputMapper(value)¶
- Bases: - enum.Enum- mapping from object input to stan file - 
AUTO_RIDGE_SCALE= 'AUTO_RIDGE_SCALE'¶
 - 
LASSO_SCALE= 'LASSO_SCALE'¶
 
- 
- 
class orbit.constants.lgt.LatentSamplingParameters(value)¶
- Bases: - enum.Enum- latent variables to be sampled - 
INITIAL_SEASONALITY= 'init_sea'¶
 - 
REGRESSION_NEGATIVE_COEFFICIENTS= 'nr_beta'¶
 - 
REGRESSION_POSITIVE_COEFFICIENTS= 'pr_beta'¶
 - 
REGRESSION_REGULAR_COEFFICIENTS= 'rr_beta'¶
 
- 
- 
class orbit.constants.lgt.RegressionPenalty(value)¶
- Bases: - enum.Enum- An enumeration. - 
auto_ridge= 2¶
 - 
fixed_ridge= 0¶
 - 
lasso= 1¶
 
- 
orbit.constants.palette module¶
- 
class orbit.constants.palette.QualitativePalette(value)¶
- Bases: - enum.Enum- Palette for visualizing discrete categorical data - 
Bar5= ['#ef476fff', '#ffd166ff', '#06d6a0ff', '#118ab2ff', '#073b4cff']¶
 - 
Line4= ['#e6c72b', '#2be669', '#2b4ae6', '#e62ba8']¶
 - 
PostQ= ['#1fc600', '#ff4500']¶
 - 
Rainbow8= ['#ffadadff', '#ffd6a5ff', '#fdffb6ff', '#caffbfff', '#9bf6ffff', '#a0c4ffff', '#bdb2ffff', '#ffc6ffff']¶
 - 
Stack= ['#12939A', '#F15C17', '#DDB27C', '#88572C', '#FF991F', '#DA70BF', '#125C77', '#4DC19C', '#776E57', '#17B8BE', '#F6D18A', '#B7885E', '#FFCB99', '#F89570', '#829AE3', '#E79FD5', '#1E96BE', '#89DAC1', '#B3AD9E']¶
 
-